Year	11 Che	mistry Semester 2 Exam 2009 Solutions	
<u>Secti</u>	on One	2	
1 2 3 4 5 6 7 8 9 10 11 12 13	(c) (a) (b) (c) (d) (c) or (a) (c) (a) (d) (c) (c)	14 (b) 15 (c) 16 (a) 17 (b) 18 (d) 19 (b) 20 (c) 21 (a) 22 (c) 23 (b) 24 (c) 25 (a)	
<u>Secti</u>	on Two	2	[50]
1.	[1 ma Do no Maxin	ark for correct species, 1 mark for balanced equation] ot penalise for missing or incorrect state symbols mum 1 mark if molecular or formula equation used	
	(a)	$Ag^{+} + NaCI \rightarrow AgCI + Na^{+}$	[2]
	(b)	$2 H^+ + CO_3^{2-} \rightarrow CO_2 + H_2O$	[2]
	(C)	$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$	[2]
	(d)	$CI_2 + 2I^- \rightarrow 2CI^- + I_2$	[2]
	(e)	Br_2 + $C_6H_{10} \rightarrow 1,2$ -dibromocyclohexane	[2]
			[12 marks]
2.	(a)	iron(III) oxide	[1]
	(b)	carbon monoxide	[1]
	(C)	sodium hydrogen sulfate	[1]
	(d)	ethene (or ethylene)	[1]
3.			[4 marks]

[4	marks]
----	--------

Bronze	М	lodine	CM
Diamond	CN	Magnesium sulfate	I
Silicon dioxide	CN	Hydrogen peroxide	СМ
Dry ice (CO ₂)	СМ	Benzene	СМ
			[4 mark

4. *Majority of observations required.*

(a)	A blue, luminous flame.	[1]
(b)	A colourless gas is evolved.	[1]
(C)	Black solid dissolves to form a blue/green coloured solution.	[1]
(d)	White solid dissolves to form a colourless solution.	[1]
		[4 marks]

5. Many examples possible. "Use" must relate to specific "property".

Substance	Property (some examples)	Related use (some examples)
Copper	ductile	↔ electrical wiring
	malleable	↔roofing, pots
	 relatively weak reductant 	⇔coins
NaOH	 strong base 	↔making soap
	Strong base	↔paint stripper/ drain cleaner
	 forms complex ions 	↔dissolving of alumina
Iron	 high tensile strength 	↔bridge building
	 good reductant 	↔sacrificial anode
	magnetic	⇔magnet
	 good thermal conductor 	⇔cooking
Ammonia	weak base	 ↔cleaning agent
	 solubilises metal hydroxides 	↔extraction in mining
	 forms ammonium salt 	↔fertilisers/explosives

[8 marks]

6.	(a)	For a substance to be an electrical of free to move. Calcium nitrate is an ionic compound	conductor charged particles must be d with ions tightly bound in fixed	[1]
		In the liquid and aqueous states the	conductor).	[1]
		conduct charge.		[1]
	(b)	In aqueous solution hydrogen nitrate	e molecules ionise fully.	[1]
		$HNO_3 \rightarrow H^+ + NO_3^-$		[1]
				[5 marks]
7.	m(F⁻) _{in}	$g_{\text{lass of water}} = 0.950 \times 10^{-3} \times (150)^{-7}$	1000) = 0.0001425 g	[1]
	n(F⁻) _{in ç}	_{glass of water} = m/M = 0.0001425 / 1	9.00 = 0.00000750 mol	[1]
	Numbe	er of F ⁻ ions in 150 mL glass of water	= n x N _A = 7.50 x 10 ⁻⁶ x 6.022 x 10 ²³ = 4.52 x 10¹⁸	[1]

[3 marks]

[10 marks]

8.

[4]

[2]

(b) Products are **magnesium**, and **chlorine** (Cl_2) [*must state both*] [1]

(c)
$$Mg^{2+} + 2Cl^- \rightarrow Mg + Cl_2$$

[7 marks]

10. $A_r(Ga) = 69.9 = (68.9x) + [70.7 (100 - x)] / 100$ [1] Therefore, 6990 = 68.9x + 7070 - 70.7x-80 = -1.8xx = 44.4 [1]

> % Abundance of ⁶⁹Ga = **44.4%** % Abundance of ⁷¹Ga = **55.6%**

> > [3 marks]

11. Different approaches possible.

[1]

(a) Reduce the commercial [PO₄³⁻] in detergents and fertilisers OR reduce runoff into streams OR treat detergent effluent to remove phosphates [precipitation] before water enters streams. [1]

(b)
$$n(PO_4^{3-}) = 0.123 / (30.97 + 4 \times 16.00) = n(P) = 1.295 \times 10^{-3} \text{ mol}$$
 [1]

$$m(P) = 1.295 \times 10^{-3} \times 30.97 = 0.0401 g$$
 [1]

(c) Add Mg²⁺ or Ca²⁺ (or any other soluble ionic substance containing a suitable ion) [1] $3Mg^{2^+} + 2PO_4^{3^-} \rightarrow Mg_3(PO_4)_2$ (s) \downarrow [1]

[6 marks]

			Year 11 Chemistry 2009 Solutions
13.	(a)	$n(H_2) = v / V_{M @ S.T.P.} = 4200 / 24.41 = 187 mol (accept 2, 3 or 4 significant figures)$	[1]
	(b)	Temp. decreases → balloon will contract. Pressure decreases → balloon will expand. Pressure effect is greater than effect of temperature therefore net expansion will result in balloon bursting.	[½] [½] [1]
	(C)	H_2 gas has lower density than air. The balloon will rise due to its buoyancy in air.	[1] [4 marks]
14.	[Ag ₂ S	$(s) + 2e^{-} \rightarrow 2Ag(s) + S^{2-}(aq)] \times 3$	
	[Al (s)	\rightarrow Al ³⁺ (aq) + 3e ⁻] x 2	[1]
	3Ag₂S	S + 2Al \rightarrow 6Ag + 3S ²⁻ + 2Al ³⁺	[1]
			[2 marks]

SectionThree

(b) The intermolecular bonding is relatively **strong** (H bonding) [1]

(c) Ethylene glycol lowers the freezing point of the fluid in the cooling pipes. [1]

1.	(d)	m(C) = 12.01	/ 44.01 x 4.40	= 1.2008 g		-
		%C _{in 3.10 g} = 1	.2008 / 3.10 x 10	00% = 38.73%		[1]
		m(H) = 2 x 1.0	08 / 18.016 x 2	2.70 = 0.3021 g		
		% H _{in 3.10 g} = (0.3021 / 3.10 x 1	00% = 9.75%		[1]
		%H = 100 -	38.74 - 9.75	= 51.52%		[1]
	n	C 38.73 / 12.01	: H 9.75 / 1.008	: O 51.52 / 16.00		
	n	3.225	9.673	3.220	(÷ 3.22)	[1]
	n	1	3	1		
		EF = CH ₃ O				[1]
	(e)	n(EG) = 0.0724 M(EG) = m(EG)	/ 22.41 = 3.231 x // n(EG) = 0.200/	10^{-3} mol 3.231 x 10^{-3} = 61.	90	[1]
		$EFM(CH_3O) = ($ MFM/EFM = 61 MF = 2 x EF	12.01+3x1.008+1 .90/ 31.03 = 1.99	6.00)= 31.03 ≈ 2		[1]
		MF (ethylene g	lycol) = C ₂ H ₆	O ₂		[1]

[14 marks]

[1]

[2]

2.	(a)	<u>reductant</u> is metal	

- (b) Hydrogen gas (H_2) [1]
- (c) $2H_2 + O_2 \rightarrow 2H_2O$ [1]
- (d) Zinc [1]
- $(e) \qquad CO_2 \ \ + \ \ Ca(OH)_2 \ \rightarrow \ CaCO_3 \ \ + \ \ H_2O$

<u>oxidant i</u>s H⁺

2. (g)	electrical conductor	[1]
--------	----------------------	-----

3.

(i)	$\begin{array}{l} C + O_2 \ \rightarrow \ CO_2 \\ n(C)_{\text{reacted}} = n(O_2)_{\text{reacted}} \ = n(CO_2)_{\text{produced}} \end{array}$	[1]	
	n(C) = 0.350 / 12.01 = 0.02914 mol	[1]	
	$n(O_2) = 0.150 / 22.41 = 0.006693 \text{ mol}$	[1]	
	SR is 1:1 and AR is 4.35:1 oxygen is the limiting reagent (LR)	[1]	
	$v(CO_2)_{produced}$ = 0.00693 x 22.41 = 0.150 L	[1]	
(j)	ammonium chloride	[1]	
(k)	manganese (IV) oxide OR manganese dioxide	[1]	
		[23 mark	s]
(a)	$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$	[1]	
(b)	The mass was weighed several times to see that r i.e. all of the water had been removed [weigh to co	nass was constan onstant mass]	t [1]
(C)	$m(BaSO_4)_{recovered} = 19.0 mg$	[1]	
	m(Ba) = 137.3 / 233.36 x 19.0 = 11.2 mg	[1]	
(d)	[Ba ²⁺] = 11.2 mg per 400 mL		
	= 11.2 x 1000 / 400 mg per kg solution	[1]	
	= 28.0 mg/L	[1]	
(e)	The concentration of barium ions is 14 times the least accepted in drinking water.	evel [1]	

- 3. (f) Other ions which also form precipitates include Pb²⁺, Ca²⁺, Sr²⁺ and Ag⁺ [1]
 (g) independent variable : time (in days) [1]
 - dependent variable : [Ba²⁺] (in mg/L) [1]
 - (h) Sampling technique need to be sound:
 - Sampling (400 mL) from the same spot in the pond [1]
 - Period of time with no rainfall
 - No other influences [another industry]

Laboratory work needs to be consistent and accurate:

- Method of filtering and drying precipitate [1]
- Same weighing balance
- (i) Safety of handling barium samples:
 - Safety glasses [1]
 - Gloves / breathing mask [1]
- (j) Heading [1], units [1], scale [1], axes [1], points connected [1]

(k) <u>Conclusions</u> (a number can be made- only 1 needed):

[Ba²⁺] were at a dangerous level (above 50 mg/L) from day 10.

[2]

- [Ba²⁺] generally increased over the time period
- [Ba²⁺] fluctuated over the time period
- Water quality not suitable for human consumption

- 3. (I) Possible environmental impacts (any two):
 - Loss of flora and fauna
 - Food chains/webs changed
 - Health of animals affected

[2]

[23 marks]